This example shows how to extract signals from regions defined by an atlas, and to estimate a covariance matrix based on these signals.
Python source code: plot_adhd_covariance.py
plotted_subject = 0 # subject to plot
import pylab as pl
import matplotlib
# Copied from matplotlib 1.2.0 for matplotlib 0.99 compatibility.
_bwr_data = ((0.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 0.0, 0.0))
pl.cm.register_cmap(cmap=matplotlib.colors.LinearSegmentedColormap.from_list(
"bwr", _bwr_data))
def plot_matrices(cov, prec, title):
"""Plot covariance and precision matrices, for a given processing. """
prec = prec.copy() # avoid side effects
# Display sparsity pattern
sparsity = prec == 0
pl.figure()
pl.imshow(sparsity, interpolation="nearest")
pl.title("%s / sparsity" % title)
# Put zeros on the diagonal, for graph clarity.
size = prec.shape[0]
prec[range(size), range(size)] = 0
span = max(abs(prec.min()), abs(prec.max()))
# Display covariance matrix
pl.figure()
pl.imshow(cov, interpolation="nearest",
vmin=-1, vmax=1, cmap=pl.cm.get_cmap("bwr"))
pl.colorbar()
pl.title("%s / covariance" % title)
# Display precision matrix
pl.figure()
pl.imshow(prec, interpolation="nearest",
vmin=-span, vmax=span,
cmap=pl.cm.get_cmap("bwr"))
pl.colorbar()
pl.title("%s / precision" % title)
print("-- Fetching datasets ...")
import nilearn.datasets
atlas = nilearn.datasets.fetch_msdl_atlas()
dataset = nilearn.datasets.fetch_adhd()
import nilearn.image
import nilearn.input_data
import joblib
mem = joblib.Memory(".")
# Number of subjects to consider for group-sparse covariance
n_subjects = 10
subjects = []
for subject_n in range(n_subjects):
filename = dataset["func"][subject_n]
print("Processing file %s" % filename)
print("-- Computing confounds ...")
confound_file = dataset["confounds"][subject_n]
hv_confounds = mem.cache(nilearn.image.high_variance_confounds)(filename)
print("-- Computing region signals ...")
masker = nilearn.input_data.NiftiMapsMasker(
atlas["maps"], resampling_target="maps", detrend=True,
low_pass=None, high_pass=0.01, t_r=2.5, standardize=True,
memory=mem, memory_level=1, verbose=1)
region_ts = masker.fit_transform(filename,
confounds=[hv_confounds, confound_file])
subjects.append(region_ts)
print("-- Computing group-sparse precision matrices ...")
from nilearn.group_sparse_covariance import GroupSparseCovarianceCV
gsc = GroupSparseCovarianceCV(verbose=2, n_jobs=3)
gsc.fit(subjects)
print("-- Computing graph-lasso precision matrices ...")
from sklearn import covariance
gl = covariance.GraphLassoCV(n_jobs=3)
gl.fit(subjects[plotted_subject])
print("-- Displaying results")
title = "{0:d} GroupSparseCovariance $\\alpha={1:.2e}$".format(plotted_subject,
gsc.alpha_)
plot_matrices(gsc.covariances_[..., plotted_subject],
gsc.precisions_[..., plotted_subject], title)
title = "{0:d} GraphLasso $\\alpha={1:.2e}$".format(plotted_subject,
gl.alpha_)
plot_matrices(gl.covariance_, gl.precision_, title)
pl.show()