Nifti data loader with preprocessing for multiple subjects
| Parameters : | mask: filename or NiImage, optional :
smoothing_fwhm: float, optional :
standardize: boolean, optional :
detrend: boolean, optional :
low_pass: False or float, optional :
high_pass: False or float, optional :
t_r: float, optional :
target_affine: 3x3 or 4x4 matrix, optional :
target_shape: 3-tuple of integers, optional :
mask_connected: boolean, optional :
mask_opening: int, optional :
mask_lower_cutoff: float, optional :
mask_upper_cutoff: float, optional :
memory: instance of joblib.Memory or string :
memory_level: integer, optional :
n_jobs: integer, optional :
verbose: interger, optional :
|
|---|
See also
Attributes
Methods
| fit([niimgs, y]) | Compute the mask corresponding to the data |
| fit_transform(X[, y, confounds]) | Fit to data, then transform it |
| get_params([deep]) | Get parameters for this estimator. |
| inverse_transform(X) | |
| set_params(**params) | Set the parameters of this estimator. |
| transform(niimgs[, confounds]) | Apply mask, spatial and temporal preprocessing |
| transform_niimgs(niimgs_list[, confounds, ...]) | Prepare multi subject data in parallel |
| transform_single_niimgs(niimgs[, confounds, ...]) |
Compute the mask corresponding to the data
| Parameters : | niimgs: list of filenames or NiImages :
|
|---|
Fit to data, then transform it
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
| Parameters : | X : numpy array of shape [n_samples, n_features]
y : numpy array of shape [n_samples]
|
|---|---|
| Returns : | X_new : numpy array of shape [n_samples, n_features_new]
|
Get parameters for this estimator.
| Parameters : | deep: boolean, optional :
|
|---|---|
| Returns : | params : mapping of string to any
|
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
| Returns : | self : |
|---|
Apply mask, spatial and temporal preprocessing
| Parameters : | niimgs: nifti-like images :
confounds: CSV file path or 2D matrix :
|
|---|---|
| Returns : | data: {list of numpy arrays} :
|
Prepare multi subject data in parallel
| Parameters : | niimgs_list: list of niimgs :
confounds: list of confounds, optional :
copy: boolean, optional :
n_jobs: integer, optional :
|
|---|