Nifti data loader with preprocessing
Parameters : | mask : filename or NiImage, optional
sessions : numpy array, optional
smoothing_fwhm : float, optional
standardize : boolean, optional
detrend : boolean, optional
low_pass : False or float, optional
high_pass : False or float, optional
t_r : float, optional
target_affine : 3x3 or 4x4 matrix, optional
target_shape : 3-tuple of integers, optional
mask_connected : boolean, optional
mask_opening : int, optional
mask_lower_cutoff : float, optional
mask_upper_cutoff : float, optional
memory : instance of joblib.Memory or string
memory_level : integer, optional
verbose : integer, optional
|
---|
See also
nilearn.masking.compute_epi_mask, nilearn.image.resample_img, nilearn.masking.apply_mask, nilearn.signal.clean
Attributes
Methods
fit([niimgs, y]) | Compute the mask corresponding to the data |
fit_transform(X[, y, confounds]) | Fit to data, then transform it |
get_params([deep]) | Get parameters for this estimator. |
inverse_transform(X) | |
set_params(**params) | Set the parameters of this estimator. |
transform(niimgs[, confounds]) | Apply mask, spatial and temporal preprocessing |
transform_niimgs(niimgs_list[, confounds, ...]) | Prepare multi subject data in parallel |
transform_single_niimgs(niimgs[, confounds, ...]) |
Compute the mask corresponding to the data
Parameters : | niimgs: list of filenames or NiImages :
|
---|
Fit to data, then transform it
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters : | X : numpy array of shape [n_samples, n_features]
y : numpy array of shape [n_samples]
|
---|---|
Returns : | X_new : numpy array of shape [n_samples, n_features_new]
|
Get parameters for this estimator.
Parameters : | deep: boolean, optional :
|
---|---|
Returns : | params : mapping of string to any
|
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : | self : |
---|
Apply mask, spatial and temporal preprocessing
Parameters : | niimgs: nifti like images :
confounds: CSV file path or 2D matrix :
|
---|
Prepare multi subject data in parallel
Parameters : | niimgs_list: list of niimgs :
confounds: list of confounds, optional :
copy: boolean, optional :
n_jobs: integer, optional :
|
---|