Giving credit

4.4.1.5. nilearn.masking.unmask

nilearn.masking.unmask(X, mask_img, order='F')

Take masked data and bring them back into 3D/4D

This function can be applied to a list of masked data.

Parameters :

X: numpy.ndarray (or list of) :

Masked data. shape: (samples #, features #). If X is one-dimensional, it is assumed that samples# == 1.

mask_img: nifti-like image :

Mask. Must be 3-dimensional.

Returns :

data: nifti-like image (or list of) :

Unmasked data. Depending on the shape of X, data can have different shapes:

  • X.ndim == 2: Shape: (mask.shape[0], mask.shape[1], mask.shape[2], X.shape[0])
  • X.ndim == 1: Shape: (mask.shape[0], mask.shape[1], mask.shape[2])