8.19.1.1. sklearn.metrics.Scorer¶
- class sklearn.metrics.Scorer(score_func, greater_is_better=True, needs_threshold=False, **kwargs)¶
Flexible scores for any estimator.
This class wraps estimator scoring functions for the use in GridSearchCV and cross_val_score. It takes a score function, such as accuracy_score, mean_squared_error, adjusted_rand_index or average_precision and provides a call method.
Parameters : score_func : callable,
Score function (or loss function) with signature score_func(y, y_pred, **kwargs).
greater_is_better : boolean, default=True
Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good.
needs_threshold : bool, default=False
Whether score_func takes a continuous decision certainty. For example average_precision or the area under the roc curve can not be computed using predictions alone, but need the output of decision_function or predict_proba.
**kwargs : additional arguments
Additional parameters to be passed to score_func.
Examples
>>> from sklearn.metrics import fbeta_score, Scorer >>> ftwo_scorer = Scorer(fbeta_score, beta=2) >>> from sklearn.grid_search import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer)
- __init__(score_func, greater_is_better=True, needs_threshold=False, **kwargs)¶
- __call__(estimator, X, y)¶
Score X and y using the provided estimator.
Parameters : estimator : object
Trained estimator to use for scoring. If needs_threshold is True, estimator needs to provide decision_function or predict_proba. Otherwise, estimator needs to provide predict.
X : array-like or sparse matrix
Test data that will be scored by the estimator.
y : array-like
True prediction for X.
Returns : score : float
Score function applied to prediction of estimator on X.