Fork me on GitHub

Online learning of a dictionary of parts of facesΒΆ

This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces.

From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly 15 patches from this image. Once we have accumulated 750 of these patches (using 50 images), we run the partial_fit method of the online KMeans object, MiniBatchKMeans.

The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to choose a random new cluster.

Python source code: plot_dict_face_patches.py

print(__doc__)

import time

import pylab as pl
import numpy as np


from sklearn import datasets
from sklearn.cluster import MiniBatchKMeans
from sklearn.feature_extraction.image import extract_patches_2d

faces = datasets.fetch_olivetti_faces()

###############################################################################
# Learn the dictionary of images

print('Learning the dictionary... ')
rng = np.random.RandomState(0)
kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True)
patch_size = (20, 20)

buffer = []
index = 1
t0 = time.time()

# The online learning part: cycle over the whole dataset 4 times
index = 0
for _ in range(6):
    for img in faces.images:
        data = extract_patches_2d(img, patch_size, max_patches=50,
                                  random_state=rng)
        data = np.reshape(data, (len(data), -1))
        buffer.append(data)
        index += 1
        if index % 10 == 0:
            data = np.concatenate(buffer, axis=0)
            data -= np.mean(data, axis=0)
            data /= np.std(data, axis=0)
            kmeans.partial_fit(data)
            buffer = []
        if index % 100 == 0:
            print('Partial fit of %4i out of %i'
                  % (index, 6 * len(faces.images)))

dt = time.time() - t0
print('done in %.2fs.' % dt)

###############################################################################
# Plot the results
pl.figure(figsize=(4.2, 4))
for i, patch in enumerate(kmeans.cluster_centers_):
    pl.subplot(9, 9, i + 1)
    pl.imshow(patch.reshape(patch_size), cmap=pl.cm.gray,
              interpolation='nearest')
    pl.xticks(())
    pl.yticks(())


pl.suptitle('Patches of faces\nTrain time %.1fs on %d patches' %
            (dt, 8 * len(faces.images)), fontsize=16)
pl.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)

pl.show()
Previous
Next