sklearn.cluster.Ward¶
- class sklearn.cluster.Ward(n_clusters=2, memory=Memory(cachedir=None), connectivity=None, copy=True, n_components=None, compute_full_tree='auto')¶
Ward hierarchical clustering: constructs a tree and cuts it.
Recursively merges the pair of clusters that minimally increases within-cluster variance.
Parameters : n_clusters : int, default=2
The number of clusters to find.
connectivity : sparse matrix (optional)
Connectivity matrix. Defines for each sample the neighboring samples following a given structure of the data. Default is None, i.e, the hierarchical clustering algorithm is unstructured.
memory : Instance of joblib.Memory or string (optional)
Used to cache the output of the computation of the tree. By default, no caching is done. If a string is given, it is the path to the caching directory.
copy : bool, default=True
Copy the connectivity matrix or work in-place.
n_components : int (optional)
The number of connected components in the graph defined by the connectivity matrix. If not set, it is estimated.
compute_full_tree: bool or ‘auto’ (optional) :
Stop early the construction of the tree at n_clusters. This is useful to decrease computation time if the number of clusters is not small compared to the number of samples. This option is useful only when specifying a connectivity matrix. Note also that when varying the number of cluster and using caching, it may be advantageous to compute the full tree.
Attributes
Methods
fit(X) Fit the hierarchical clustering on the data fit_predict(X[, y]) Performs clustering on X and returns cluster labels. get_params([deep]) Get parameters for this estimator. set_params(**params) Set the parameters of this estimator. - __init__(n_clusters=2, memory=Memory(cachedir=None), connectivity=None, copy=True, n_components=None, compute_full_tree='auto')¶
- fit(X)¶
Fit the hierarchical clustering on the data
Parameters : X : array-like, shape = [n_samples, n_features]
The samples a.k.a. observations.
Returns : self :
- fit_predict(X, y=None)¶
Performs clustering on X and returns cluster labels.
Parameters : X : ndarray, shape (n_samples, n_features)
Input data.
Returns : y : ndarray, shape (n_samples,)
cluster labels
- get_params(deep=True)¶
Get parameters for this estimator.
Parameters : deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns : params : mapping of string to any
Parameter names mapped to their values.
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : self :