Fork me on GitHub

sklearn.covariance.GraphLasso

class sklearn.covariance.GraphLasso(alpha=0.01, mode='cd', tol=0.0001, max_iter=100, verbose=False, assume_centered=False)

Sparse inverse covariance estimation with an l1-penalized estimator.

Parameters :

alpha : positive float, optional

The regularization parameter: the higher alpha, the more regularization, the sparser the inverse covariance.

cov_init : 2D array (n_features, n_features), optional

The initial guess for the covariance.

mode : {‘cd’, ‘lars’}

The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable.

tol : positive float, optional

The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped.

max_iter : integer, optional

The maximum number of iterations.

verbose : boolean, optional

If verbose is True, the objective function and dual gap are plotted at each iteration.

Attributes

covariance_ array-like, shape (n_features, n_features) Estimated covariance matrix
precision_ array-like, shape (n_features, n_features) Estimated pseudo inverse matrix.

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X[, y])
get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the Mahalanobis distances of given observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with
set_params(**params) Set the parameters of this estimator.
__init__(alpha=0.01, mode='cd', tol=0.0001, max_iter=100, verbose=False, assume_centered=False)
error_norm(comp_cov, norm='frobenius', scaling=True, squared=True)

Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius norm).

Parameters :

comp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

The type of norm used to compute the error. Available error types: - ‘frobenius’ (default): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error (comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the squared error norm is returned. If False, the error norm is returned.

Returns :

The Mean Squared Error (in the sense of the Frobenius norm) between :

`self` and `comp_cov` covariance estimators. :

get_params(deep=True)

Get parameters for this estimator.

Parameters :

deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns :

params : mapping of string to any

Parameter names mapped to their values.

get_precision()

Getter for the precision matrix.

Returns :

`precision_` : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)

Computes the Mahalanobis distances of given observations.

The provided observations are assumed to be centered. One may want to center them using a location estimate first.

Parameters :

observations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit (including centering).

Returns :

mahalanobis_distance : array, shape = [n_observations,]

Mahalanobis distances of the observations.

score(X_test, y=None)

Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance matrix.

Parameters :

X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X_test is assumed to be drawn from the same distribution than the data used in fit (including centering).

y : not used, present for API consistence purpose.

Returns :

res : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance matrix.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns :self :
Previous
Next