sklearn.dummy.DummyRegressor¶
- class sklearn.dummy.DummyRegressor¶
- DummyRegressor is a regressor that always predicts the mean of the training targets. - This regressor is useful as a simple baseline to compare with other (real) regressors. Do not use it for real problems. - Attributes - y_mean_ - float or array of shape [n_outputs] - Mean of the training targets. - n_outputs_ - int, - Number of outputs. - outputs_2d_ - bool, - True if the output at fit is 2d, else false. - Methods - fit(X, y) - Fit the random regressor. - get_params([deep]) - Get parameters for this estimator. - predict(X) - Perform classification on test vectors X. - score(X, y) - Returns the coefficient of determination R^2 of the prediction. - set_params(**params) - Set the parameters of this estimator. - __init__()¶
- x.__init__(...) initializes x; see help(type(x)) for signature 
 - fit(X, y)¶
- Fit the random regressor. - Parameters : - X : {array-like, sparse matrix}, shape = [n_samples, n_features] - Training vectors, where n_samples is the number of samples and n_features is the number of features. - y : array-like, shape = [n_samples] or [n_samples, n_outputs] - Target values. - Returns : - self : object - Returns self. 
 - get_params(deep=True)¶
- Get parameters for this estimator. - Parameters : - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns : - params : mapping of string to any - Parameter names mapped to their values. 
 - predict(X)¶
- Perform classification on test vectors X. - Parameters : - X : {array-like, sparse matrix}, shape = [n_samples, n_features] - Input vectors, where n_samples is the number of samples and n_features is the number of features. - Returns : - y : array, shape = [n_samples] or [n_samples, n_outputs] - Predicted target values for X. 
 - score(X, y)¶
- Returns the coefficient of determination R^2 of the prediction. - The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse. - Parameters : - X : array-like, shape = (n_samples, n_features) - Test samples. - y : array-like, shape = (n_samples,) - True values for X. - Returns : - score : float - R^2 of self.predict(X) wrt. y. 
 - set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object. - Returns : - self : 
 
 
        