sklearn.feature_selection.SelectFdr¶
- class sklearn.feature_selection.SelectFdr(score_func=<function f_classif at 0x2fd4f50>, alpha=0.05)¶
- Filter: Select the p-values for an estimated false discovery rate - This uses the Benjamini-Hochberg procedure. alpha is the target false discovery rate. - Parameters : - score_func : callable - Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues). - alpha : float, optional - The highest uncorrected p-value for features to keep. - Attributes - scores_ - array-like, shape=(n_features,) - Scores of features. - pvalues_ - array-like, shape=(n_features,) - p-values of feature scores. - Methods - fit(X, y) - Evaluate the score function on samples X with outputs y. - fit_transform(X[, y]) - Fit to data, then transform it. - get_params([deep]) - Get parameters for this estimator. - get_support([indices]) - Get a mask, or integer index, of the features selected - inverse_transform(X) - Reverse the transformation operation - set_params(**params) - Set the parameters of this estimator. - transform(X) - Reduce X to the selected features. - __init__(score_func=<function f_classif at 0x2fd4f50>, alpha=0.05)¶
 - fit(X, y)¶
- Evaluate the score function on samples X with outputs y. - Records and selects features according to the p-values output by the score function. 
 - fit_transform(X, y=None, **fit_params)¶
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters : - X : numpy array of shape [n_samples, n_features] - Training set. - y : numpy array of shape [n_samples] - Target values. - Returns : - X_new : numpy array of shape [n_samples, n_features_new] - Transformed array. 
 - get_params(deep=True)¶
- Get parameters for this estimator. - Parameters : - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns : - params : mapping of string to any - Parameter names mapped to their values. 
 - get_support(indices=False)¶
- Get a mask, or integer index, of the features selected - Parameters : - indices : boolean (default False) - If True, the return value will be an array of integers, rather than a boolean mask. - Returns : - support : array - An index that selects the retained features from a feature vector. If indices is False, this is a boolean array of shape [# input features], in which an element is True iff its corresponding feature is selected for retention. If indices is True, this is an integer array of shape [# output features] whose values are indices into the input feature vector. 
 - inverse_transform(X)¶
- Reverse the transformation operation - Parameters : - X : array of shape [n_samples, n_selected_features] - The input samples. - Returns : - X_r : array of shape [n_samples, n_original_features] - X with columns of zeros inserted where features would have been removed by transform. 
 - set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object. - Returns : - self : 
 - transform(X)¶
- Reduce X to the selected features. - Parameters : - X : array of shape [n_samples, n_features] - The input samples. - Returns : - X_r : array of shape [n_samples, n_selected_features] - The input samples with only the selected features. 
 
 
        