Fork me on GitHub

sklearn.feature_selection.f_classif

sklearn.feature_selection.f_classif(X, y)

Compute the Anova F-value for the provided sample

Parameters :

X : {array-like, sparse matrix} shape = [n_samples, n_features]

The set of regressors that will tested sequentially.

y : array of shape(n_samples)

The data matrix.

Returns :

F : array, shape = [n_features,]

The set of F values.

pval : array, shape = [n_features,]

The set of p-values.

Previous
Next