sklearn.kernel_approximation.SkewedChi2Sampler¶
- class sklearn.kernel_approximation.SkewedChi2Sampler(skewedness=1.0, n_components=100, random_state=None)¶
- Approximates feature map of the “skewed chi-squared” kernel by Monte Carlo approximation of its Fourier transform. - Parameters : - skewedness : float - “skewedness” parameter of the kernel. Needs to be cross-validated. - n_components : int - number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space. - random_state : {int, RandomState}, optional - If int, random_state is the seed used by the random number generator; if RandomState instance, random_state is the random number generator. - See also - AdditiveChi2Sampler
- A different approach for approximating an additive variant of the chi squared kernel.
- sklearn.metrics.chi2_kernel
- The exact chi squared kernel.
 - References - See “Random Fourier Approximations for Skewed Multiplicative Histogram Kernels” by Fuxin Li, Catalin Ionescu and Cristian Sminchisescu. - Methods - fit(X[, y]) - Fit the model with X. - fit_transform(X[, y]) - Fit to data, then transform it. - get_params([deep]) - Get parameters for this estimator. - set_params(**params) - Set the parameters of this estimator. - transform(X[, y]) - Apply the approximate feature map to X. - __init__(skewedness=1.0, n_components=100, random_state=None)¶
 - fit(X, y=None)¶
- Fit the model with X. - Samples random projection according to n_features. - Parameters : - X : array-like, shape (n_samples, n_features) - Training data, where n_samples in the number of samples and n_features is the number of features. - Returns : - self : object - Returns the transformer. 
 - fit_transform(X, y=None, **fit_params)¶
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters : - X : numpy array of shape [n_samples, n_features] - Training set. - y : numpy array of shape [n_samples] - Target values. - Returns : - X_new : numpy array of shape [n_samples, n_features_new] - Transformed array. 
 - get_params(deep=True)¶
- Get parameters for this estimator. - Parameters : - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns : - params : mapping of string to any - Parameter names mapped to their values. 
 - set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object. - Returns : - self : 
 - transform(X, y=None)¶
- Apply the approximate feature map to X. - Parameters : - X : array-like, shape (n_samples, n_features) - New data, where n_samples in the number of samples and n_features is the number of features. - Returns : - X_new : array-like, shape (n_samples, n_components) 
 
 
        