3.2.3.1.3. sklearn.linear_model.LarsCV¶
- class sklearn.linear_model.LarsCV(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True)¶
- Cross-validated Least Angle Regression model - Parameters : - fit_intercept : boolean - whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). - verbose : boolean or integer, optional - Sets the verbosity amount - normalize : boolean, optional, default False - If True, the regressors X will be normalized before regression. - copy_X : boolean, optional, default True - If True, X will be copied; else, it may be overwritten. - precompute : True | False | ‘auto’ | array-like - Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument. - max_iter: integer, optional : - Maximum number of iterations to perform. - cv : cross-validation generator, optional - see sklearn.cross_validation. If None is passed, default to a 5-fold strategy - max_n_alphas : integer, optional - The maximum number of points on the path used to compute the residuals in the cross-validation - n_jobs : integer, optional - Number of CPUs to use during the cross validation. If -1, use all the CPUs - eps: float, optional : - The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. - See also - Attributes - coef_ - array, shape (n_features,) - parameter vector (w in the formulation formula) - intercept_ - float - independent term in decision function - coef_path_ - array, shape (n_features, n_alphas) - the varying values of the coefficients along the path - alpha_ - float - the estimated regularization parameter alpha - alphas_ - array, shape (n_alphas,) - the different values of alpha along the path - cv_alphas_ - array, shape (n_cv_alphas,) - all the values of alpha along the path for the different folds - cv_mse_path_ - array, shape (n_folds, n_cv_alphas) - the mean square error on left-out for each fold along the path (alpha values given by cv_alphas) - Methods - decision_function(X) - Decision function of the linear model. - fit(X, y) - Fit the model using X, y as training data. - get_params([deep]) - Get parameters for this estimator. - predict(X) - Predict using the linear model - score(X, y) - Returns the coefficient of determination R^2 of the prediction. - set_params(**params) - Set the parameters of this estimator. - __init__(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True)¶
 - decision_function(X)¶
- Decision function of the linear model. - Parameters : - X : {array-like, sparse matrix}, shape = (n_samples, n_features) - Samples. - Returns : - C : array, shape = (n_samples,) - Returns predicted values. 
 - fit(X, y)¶
- Fit the model using X, y as training data. - Parameters : - X : array-like, shape (n_samples, n_features) - Training data. - y : array-like, shape (n_samples,) - Target values. - Returns : - self : object - returns an instance of self. 
 - get_params(deep=True)¶
- Get parameters for this estimator. - Parameters : - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns : - params : mapping of string to any - Parameter names mapped to their values. 
 - predict(X)¶
- Predict using the linear model - Parameters : - X : {array-like, sparse matrix}, shape = (n_samples, n_features) - Samples. - Returns : - C : array, shape = (n_samples,) - Returns predicted values. 
 - score(X, y)¶
- Returns the coefficient of determination R^2 of the prediction. - The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse. - Parameters : - X : array-like, shape = (n_samples, n_features) - Test samples. - y : array-like, shape = (n_samples,) - True values for X. - Returns : - score : float - R^2 of self.predict(X) wrt. y. 
 - set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object. - Returns : - self : 
 
 
        