Fork me on GitHub

sklearn.preprocessing.add_dummy_feature

sklearn.preprocessing.add_dummy_feature(X, value=1.0)

Augment dataset with an additional dummy feature.

This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly.

Parameters :

X : array or scipy.sparse matrix with shape [n_samples, n_features]

Data.

value : float

Value to use for the dummy feature.

Returns :

X : array or scipy.sparse matrix with shape [n_samples, n_features + 1]

Same data with dummy feature added as first column.

Examples

>>> from sklearn.preprocessing import add_dummy_feature
>>> add_dummy_feature([[0, 1], [1, 0]])
array([[ 1.,  0.,  1.],
       [ 1.,  1.,  0.]])
Previous
Next