Extract labeled-defined region signals from images.
Parameters : | labels_img: niimg :
background_label: number, optional :
mask_img: niimg, optional :
smoothing_fwhm: float, optional :
standardize: boolean, optional :
detrend: boolean, optional :
low_pass: False or float, optional :
high_pass: False or float, optional :
t_r: float, optional :
resampling_target: {“labels”, None}, optional. :
memory: joblib.Memory or str, optional :
memory_level: int, optional :
verbose: integer, optional :
|
---|
See also
Notes
With the default value for resampling_target, every 3D image processed by transform() will be resampled to the shape of labels_img. It may lead to a very large memory consumption is the voxel number in labels_img is large.
Methods
fit([X, y]) | Prepare signal extraction from regions. |
fit_transform(niimgs[, confounds]) | |
get_params([deep]) | Get parameters for this estimator. |
inverse_transform(signals) | Compute voxel signals from region signals |
set_params(**params) | Set the parameters of this estimator. |
transform(niimgs[, confounds]) | Extract signals from images. |
Prepare signal extraction from regions.
All parameters are unused, they are for scikit-learn compatibility.
Get parameters for this estimator.
Parameters : | deep: boolean, optional :
|
---|---|
Returns : | params : mapping of string to any
|
Compute voxel signals from region signals
Any mask given at initialization is taken into account.
Parameters : | signals (2D numpy.ndarray) :
|
---|---|
Returns : | voxel_signals (Nifti1Image) :
|
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : | self : |
---|
Extract signals from images.
Parameters : | niimgs: niimg :
confounds: array-like, optional :
|
---|---|
Returns : | signals: 2D numpy.ndarray :
|